




Refer to slide deck from last year (”Low-level Thinking in High-level Shading Languages”) 

for details on these optimizations. This presentation will assume that you already know what 

things like ”MAD-form” means.





Back in DX9 era a cubemap lookup was still a single sample instruction, and the same was 

true for projective textures (tex2Dproj). In DX10 direct support for projective textures was 

removed, with the expectation that shaders that need projective texturing will simply do the 

division by w manually. This reflected the fact that no hardware did the division by w in the 

texture unit anymore, so there was no need to pretend it did. The cost of this fixed function 

hardware could no longer be motivated when we have so much ALU units that would be 

perfectly capable of doing this math. The situation for cubemaps is the same. Obviously we 

still need fast sampling, so cubemaps are still a first class citizen in the API and will likely 

remain that way; however, the coordinate normalization is not something that we want to 

spend an awful lot of transistors on when those transistors could rather be used to add more 

general ALU cores instead. Consequently, this is handled by the ALUs these days. The D3D 

bytecode still treats sampling a cubemap as a simple sample instruction. However, it may 

surprise you what this expands to in native hardware instructions.



This is what the actual shader looks like in the end. There is a set of different types of 

instructions here, vector ALU instruction (VALU) which are your typical math instructions 

and operate on wide SIMD vectors across all threads/pixels/vertices, and scalar instructions 

(SALU) that operate on things that are common for all threads. More on these instructions 

later in this presentation. There is also an image instruction (IMG) that does the actual 

sampling here, and finally an export instruction (EXP) that writes out the final output data, 

which in the case of a pixel shader is what lands in your framebuffer.



The general trend is that more and more fixed function units move over to the shader cores. 

This makes a lot of sense from a transistor budget point of view and is something that has 

been going on for a long time. Interpolators became ALU instructions with DX11 hardware. 

Vertex fetch has been done by the shader for a long time. Even Xbox360 did this. Export 

conversion is now handled by the ALUs since GCN. Projection/cubemap math since DX10. 

Gradients have moved a bit back and forth. Since gradient are needed by the texture units 

anyway, it made sense in the past to let them handle it; however, now that GCN has a 

generic lane swizzle, the ALUs has all the tools to do the work itself, so now it’s done in the 

ALUs again.

A side effect of this trend is that things that previously were more or less for free could now 

come at a moderate cost in terms of ALU instructions. For instance, for shaders with a 

sufficiently large number of instructions / interpolator ratio interpolators used to be free, 

although short shaders or shaders with many interpolators could easily become interpolator-

bound. On DX11 hardware where interpolation is an ALU instruction, you basically pay for 

the interpolation cost. Previously interpolator-bound shaders could now became ALU-bound 

and likely run substantially faster, whereas if you weren’t previously interpolator-bound, you 

would now see a slowdown due to the additional interpolation cost.



In the past the hardware had a lot of global device state. Things sat is registers that the 

hardware units read. This is not the case anymore. Most things are backed by memory and 

then read by the hardware whenever it needs it. This is not as scary as it may sound, there 

are obviously caches in-between keeping the bandwidth cost to a minimum, and values may 

be lying around in local registers for whatever hardware unit needs it after it has been loaded 

from memory. Constants obviously moved to memory with the introduction of constant 

buffers; however, these days things like texture descriptors and sampler-states are just a 

piece of data and behave just like constants. On GCN architecture you could technically put 

a bunch of texture descriptors and sampler-states in your constant buffer, provided of course 

that we have the proper API and shader infrastructure to do things that way.

For historical reasons APIs have assigned resources to “slots”. These do not exist in 

hardware anymore. Instead drivers assemble the set of active slots and create a list of those 

in memory and just passes the pointer to the shader. 

The main implication of this is that there is no longer any particular limitation to the number 

of resources we can access from a shader. Just provide a long enough array and the shader 

can grab anything from anywhere as it pleases.

The other implication is that access to resources also comes at a cost for grabbing the 

backing data of sampler-states and texture descriptors. This cost can mostly be hidden on 

GCN since those are SALU instructions that run independently of VALU, but it is worth 

knowing that resource descriptors are loaded explicitly by the shader using actual shader 

instructions.



It is worth noting that compute units in GCN architecture are completely stateless. This 

means that once a compute shader is up and running, it has all data in its local registers 

and no longer depends on any global device state (other than data in memory). This means 

that it is perfectly possible for compute units to run in parallel with different shaders, 

completely asynchronously, and in parallel with the graphics pipeline. However, the 

graphics pipeline itself still relies on some global state, and thus it is currently not possible 

to run two different graphics pipelines in parallel. It would not surprise me if this would 

change in future hardware.



An interesting exercise when trying to understand the basic parameters to a shader is trying 

to write a “NULL” shader, or a shader that outputs no actual instructions other than say a 

final export. On AMD’s DX10 level hardware something like this would do. We are simply 

returning an interpolator directly. On DX10 level hardware, interpolators came preloaded 

into registers, so we only need to output that register and we are done. One downside of this 

approach is that if you have a lot of interpolators the shader will by necessity also consume a 

lot of registers, just to provide the shader with its inputs. This can negatively impact latency 

hiding and ultimately performance, which is another reason to go away from this approach.



On DX11 level hardware the situation is different. On all AMD DX11 hardware the 

interpolation is done manually by the shader. Left side is an HD5000 series chip, right side 

the results on the GCN architecture. On GCN we also see the addition of export conversion 

to pack the result into FP16 format.



The simple pass-through shader from DX10 has now become a bunch of work to be done by 

the shader cores.



To create a NULL shader on DX11 one could simply return the screen position system value 

instead. These values still come preloaded in registers. On GCN we can see that they were 

loaded into registers v2-v5. The registers v0 and v1 usually hold the barycentric coordinates 

used for interpolation (not used here though).



A shader only gets a handful of input parameters to work with, the rest of the data it needs 

must be loaded or computed. Depending on what shader type we are talking about, the input 

parameter varies. A vertex shader, for instance, gets a vertex index. This is used to manually 

fetch the vertex data. A pixel shaders gets barycentric coordinates for interpolation, as well 

as the screen position. A compute shader gets thread and group IDs. From the way shaders 

look in HLSL it may appear as if some things are for free from the shader’s point of view, 

such as vertex data, however, there is an increasingly large gap between what the APIs 

pretend and what the underlying hardware does.



Vertex fetch has not been a fixed function hardware unit for quite some time, despite what 

APIs pretend. Even good old Xbox360 did vertex fetch manually in the shader. The vertex 

declaration is an API construct that does not map to any underlying hardware object. Instead 

a the shader is patched according to the current vertex declaration. On Xbox360 this could 

be very expensive since the vertex fetch was inserted as a bunch of instruction directly into 

the top of the vertex shader instruction stream. For GCN architecture it can be done in a 

simpler way with a simple sub-routing call. Depending on what the active vertex declaration 

is, the driver provides a function pointer in two scalar registers that the shader simply calls 

as the first thing in the vertex shader. Note that in the left shader where we do not use any 

vertex streams, the function call is absent.



Other than the hardware provided data, the driver can also pass a small set of data into the 

shader. Typically the driver will pass information such as a pointer to the list of resources. If 

the number of resources is small enough to fit within the maximum 16 scalar registers, the 

driver will simply pass the raw resource descriptor and avoid an indirection. Given the 

limited amount of data possible to pass, this only works in a very limited number of cases, 

such as using only a single texture.



In the case of a single texture, the shader can use a raw resource descriptor. With two 

textures, the driver has to create a list of texture descriptors in memory and provide a pointer 

to it. Then the shader must load the texture descriptors from that table before it can access 

the textures.



In the past, an optimization that was commonly used was to pack interpolators together to 

reduce the number of interpolators, for instance packing two float2 texture coordinates into a 

single float4 vector. This used to be beneficial on older hardware, but on GCN this 

accomplishes nothing. It will still cost exactly the same, i.e. two ALU instructions per float. 

What will help though is to use the nointerpolation flag on attributes that are constant. This 

will reduce the cost of bringing the data in to a single ALU instruction since the data can just 

be copied into the shader instead of interpolated.

The position system value comes preloaded into shader registers, so from the shader’s point 

of view they are free. However, much like how you in the past could be interpolator-bound, 

you can also be bound by the generation of this system value by the hardware. So for short 

shaders using SV_Position could slow things down, whereas for longer shaders they become 

free and could avoid the cost of interpolation for screen-coordinate values.

The noperspective attribute doesn’t really affect the interpolation cost. It just means different 

barycentric coordinates are provided. It still costs 2 ALUs per float. However, in some cases 

where in the past you may have passed a w value and done the division by that in the pixel 

shader, you can instead use the noperspective flags and save one component as well as skip 

the division, so it could still save up to 9 ALU instructions for an xyz(w) attribute.



This is the effect of using nointerpolation, cutting the instruction count into half over 

interpolated values.



All API documentation consider SV_IsFrontFace to be a bool attribute. The hardware does 

not really have bools, all registers are 32bits and that is the smallest basic unit a GPU works 

with. So obviously bool attributes come at a full 32bit under the hood. Despite 

documentation, you can actually declare the SV_IsFrontFace variable as an uint and get the 

raw bits from the hardware, which is either 0x00000000 or 0xFFFFFFFF. This in 

combination with GCN’s BFI instruction can be used to implement a very fast normal 

flipping for back-face lighting, which is the typical use case of this attribute.

Left side shows a typical DX9/lastgen-esque implementation, which results in 5 instructions 

required. The middle one is a more DX10-ish implementation, which reduces the instruction 

count by one. Finally the right side shows the GCN-specific implementation. The BFI 

instruction basically does a bitwise blend between two inputs based on the mask. Given that 

the input SV_IsFrontFace flag is a bitmask of all zeros or ones, it becomes a select between 

the inputs. This allows us to drop the comparison, further reducing the instruction count by 

one.



The GCN architecture is a fair bit more restricted than earlier AMD hardware. The stated 

goal has been to reduce complexity to allow for more efficient hardware. The downside is 

that this in some cases leads to longer shaders than what you would see on earlier hardware. 

Given instructions size fixed at either 32 or 64bit, there is obviously not much space left for 

passing literal constants. Passing only one constant takes 32bits, so obviously there is no 

possibility at all to pass two given that we need some bits to encode the actual instruction as 

well. Additionally, the hardware can also only read a single scalar register per instruction, 

and not at the same time as a literal constant. This can be problematic for taking full 

advantage of the MAD instruction, which will be discussed later. There is however a limited 

set of common values, a handful powers of two float values and integers from -64 to 64 that 

have special encoding and can be provided for free. These can mitigate the problem in some 

cases. Similarly there are a few special output multipliers that may also help. Unfortunately 

compilers do not take advantage of this as much as they could, but that is at least a software 

problem and fixable.



The GCN architecture is ”scalar”. This is in contrast with earlier VLIW and vector based 

architectures. This terminology can at first be a bit confusing when you hear about vector 

and scalar instructions, but these terms are viewing the hardware from different angles. 

From the shader’s point of view each instruction operates on a single float or integer. That is 

what “scalar” means when discussing the architecture. However, the hardware will still run 

many instances of the shader in lockstep, basically as a very wide SIMD vector, 64 wide to 

be precise in the case of GCN, and that is what we refer to as vector instructions. So where 

the shader programmer sees a scalar float, the hardware sees a 64 float wide SIMD vector. 

On the side of the wide vector ALU hangs a small scalar unit. This unit runs what is called 

scalar instructions. It does things that are common for all threads/shaders that runs in 

parallel, such as loading constants, fetching resource descriptors, as well as flow control. 

This unit runs independently of the shader vector math. So in typical shaders where the math 

or texture fetch is dominating the shading work, the scalar unit more or less operates for 

free.



Different instructions come at different execution speed. The full rate include your typical 

floating point math, as well as basic integer and logic. Note however that as far as integer 

multiplies goes, there is a special 24bit multiply that runs at full rate, whereas a normal 32bit 

multiply does not. Current hardware is still optimized primarily for floating point math, and 

32bit integer multiplies are just not common enough in shaders to motivate spending the 

transistors to turn it into full rate. 24bit multiplies on the other hand is something you get 

almost for free out the floating point multiplier that the hardware already has, so that is why 

it can be done at full rate.

In earlier AMD hardware type conversions sat on the special transcendental unit, so you 

might have expected them to be quarter rate. However, in GCN they are full rate. Clamping 

or rounding to integers of a float are also full rate.

Double additions come at half the rate, although they also operate on twice as much data, so 

that is actually very good throughput.



Transcendentals, such as square-roots, reciprocals, trigonometry, logarithms, exponentials 

etc. come at a quarter rate. This is also true for double multiply or the fused-multiplyadd. 

Note that there is no equivalent to MAD on doubles, i.e. a multiply with proper IEEE-754 

rounding followed by add with proper rounding. Only a fused operation exists for doubles, 

with rounding in the end. This is unlikely to cause much problems, but is worth noting.

Note also that integer 32-bit multiples are quarter rate, and thus are as slow as multiplying 

doubles.

Scalar operations are handled by the independent scalar unit and thus does not count towards 

your vector instruction count. In typical shaders where math and texturing dominates, scalar 

operations become more or less free, although it is of course possible to make a shader be 

dominated by scalar instructions.



Integer division and inverse trigonometry are things you should avoid like the plague. They 

are not supported natively by the hardware and must be emulated with loads of instructions. 

The use of inverse trigonometry in particular is typically a sign in itself that you are doing 

something wrong. There are not a lot of cases where working with angles is the right thing 

to do, and almost certainly not computing them in the shader. Most likely the problem can 

be solved much more efficiently and elegantly using linear algebra. When reformulated 

things often boil down to a dot-product or two, perhaps a cross-product, and maybe a little 

basic math on top of that.

One thing to note is that unlike in previous AMD hardware where you could get a pretty 

good idea of final performance just by looking at the total VLIW slot (assuming all ALU), 

you cannot just look at the final instruction count on GCN and infer anything. You must look 

at individual instructions since their execution speed varies.



In last year’s talk I put a fair amount of emphasis on the fact that all hardware since the 

dawn of time has been built to execute multiply-adds really fast. It has always been a single 

instruction on all hardware I have ever worked with, whereas an add followed by a multiply 

has always been two instructions. The implication thus is naturally that you should write 

shaders that fits this MAD-form to the greatest extent as possible. The GCN architecture 

complicates the issue somewhat due to its more restricted instruction set. As a general rule-

of-thumb, writing in MAD-form is still the way to go; however, there are cases on GCN 

where it may not be beneficial, or even add a couple of scalar instructions. The shaders here 

illustrates a couple of failure cases. The left side represents a “before” case that consists of 

an add followed by multiply, which generates these two instructions as expected. The middle 

case uses two literal constants. These cannot both be baked into a 64bit instruction, so the 

compiler has to expand it to two instructions. The result differs somewhat between the 

platforms here, one compiler only generated a single scalar instruction and another one used 

two. Neither is optimal and it would have been possible to skip scalar instructions all 

together similar to the instruction sequence on the left, but this is what compilers at the time 

of this writing generated. Finally, the right side represents the case where both constants 

come from a constant buffer. In this case both values would lie in scalar registers, and given 

the read limitation of a single scalar register per instruction, one value must first be moved 

to a vector register before the MAD, which eliminates the benefit.



While there are cases where MAD-form does not result in a speedup, it is worth noting that 

in none of these cases does the vector instruction count increase. We are just not improving 

things. In the case of added scalar instructions, this is something that future compiler will 

hopefully address. However, the important thing to remember is that while things got a little 

bit worse for this in GCN, there still remains plenty of cases where writing in MAD-form is 

still beneficial.



This illustrates two cases where writing in MAD-form is still beneficial on GCN. The first 

case only needs a single immediate constant, so this case works. Note that the left and right 

panels are not equivalent code, but just illustrates the difference between these forms.

The other example shows how using one of the special inline constants also fixes it. There 

these two examples are equivalent and the MAD-form runs faster. It is worth noting though 

that one compiler was able to optimize the ADD-MUL case using the output multiplier 

instead, resulting in a single vector instruction even for that case.



Finally, when using a vector, the extra overhead from GCN limitations can be amortized and 

still result in a substantial overall improvement. Instead of cutting down this float4 add-

multiply from 8 to 4 operations as on previous hardware, we only go from 8 to 5, but that is 

still a good improvement. While we would not see a benefit on a single float in MAD-form 

here, even with a two-component vector would begin to see an improvement.



In the past people often tried to write vectorized code in order to better take advantage of the 

underlying vector architectures. People bunched together separate things into vectors and 

did math on vectors instead of writing things in a more intuitive form. This made sense in 

2005 perhaps, when GPUs were vector based and shader optimizers were not particularly 

sophisticated. However, since DX10 GPUs arrived everything has been scalar or VLIW, 

making explicit vectorization dubious at best and counter-productive at worst. If explicit 

vectorization introduces extra math operations, it will only slow things down. Refer to last 

year’s talk and the topic of separating scalar and vector work to see how that could easily 

happen.

Fortunately I do not see much explicit vectorization these days, the remaining exception 

may be trying to use dot-products in hope of taking advantage of a build-in instruction. This 

may work on vector-based architectures, but scalar architectures do not even have a dot-

product instruction. Instead it is implemented as a series of MUL and MADs. Even on 

VLIW architectures that do have a dot-product instruction it is unlikely to speed things up 

since you will occupy at least as many lanes and possibly more.

The problem in the example here is that the evaluation order will require that the dot-

product is evaluated first, followed by the subtraction. This unnecessarily prevents the 

compiler from merging the subtraction and multiplication into a single MAD. This is not the 

case for the expression on the left.



As hardware has gotten increasingly more powerful over the years, some parts of it has 

lagged behind. The number of ROPs (i.e. how many pixels we can output per clock) remains 

very low. While this reflects typical use cases where the shader is reasonably long, it may 

limit the performance of short shaders. Unless the output format is wide, we are not even 

theoretically capable of using the full bandwidth available. For the HD7970 we need a 

128bit format to become bandwidth bound. For the PS4 64bit would suffice.



On the XB1, if we are rendering to ESRAM, 64bit just about hits the crossover point 

between ROP and bandwidth-bound. But even if we render to the relatively slow DDR3 

memory, we will still be ROP-bound if the render-target is a typical 32bit texture.



The solution is to use a compute shader. Writing through a UAV bypasses the ROPs and 

goes straight to memory. This solution obviously does not apply to all sorts of rendering, for 

one we are skipping the entire graphics pipeline as well on which we still depend for most 

normal rendering. However, in the cases where it applies it can certainly result in a 

substantial performance increase. Cases where we are initializing textures to something else 

than a constant color, simple post-effects, this would be useful.



Branching on GCN is generally speaking very fast, provided of course that we have good 

coherency and so on. The overhead from the branching itself is very low. Other than doing 

the comparisons that we are branching on, it is more or less free given that the actual 

branching is handled by the scalar unit. The thing to look out for, however, is the register 

pressure. Very branchy code tends to increase the number of registers the shader requires. 

This can impact performance much more significantly than the branching itself does.

Most of the time branches are fine. For very tiny branches, a conditional assignment may be 

preferable. The easiest way to do that is to simply use the ?-operator. Semantically it is a 

branch though, rather than a conditional assignment, although simple expressions written 

that way tends to compile down to a conditional assignment. However, we have observed 

cases on some platforms where this didn’t happen and a full branch was emitted. In this case 

it may help to use an explicit CndMask() that maps straight to the underlying conditional 

mask instruction.



As discussed earlier, 24bit multiplies are full rate whereas 32bit multiplies are quarter rate, 

so the 24bit is preferable in the multitude of cases where it is sufficient. It is worth noting 

that while the inputs are 24bit, the result is a full 32bit value. In fact, the hardware can also 

give you the top 16 bits from the 48bit result, should you have a use for it. There is also a 

MAD version of the 24bit multiply (unlike the 32bit one) and it is worth pointing out that for 

the addition part the input is the full 32 bits, not 24.



As mentioned, 24bit multiply is full rate whereas 32bit is quarter rate. The difference is 

further expanded when you also need to add as well. The addition can be merged into a 

24bit MAD, whereas no such instruction exists for 32bit multiplies. This makes 32bit 

multiply-add 5 times slower than 24bit.



The hardware does not support any form of integer division natively. For some obvious 

cases, like dividing by a power-of-two constant the compiler does the obvious conversion of 

a bit shift. For the more generic division by constant there are known methods for generating 

a short sequence of a multiply by magic constant and some shifts and add/sub. The exact 

sequence depends on your input, so the cost is variable. The expensive part is the 

multiplication by the magic number since it is done in full 32bit, followed by 1-4 basic 

ALUs, for a total cost of 5-8 cycles. For signed integer division it is more expensive.

For the general case where the denominator is unknown the division is emulated with loads 

of instruction. This should obviously be avoided if at all possible.



The easiest optimization is to simply switch to unsigned if you do not need to deal with 

negative numbers. This has a large impact even on division by constant.

If you are dividing by constant, one thing you can do if your inputs are limited enough in 

range is to implement your own mul24 based version. For instance a division by 3 can be 

done in 2 cycles instead of the 5 required for a full 32bit. This works as long as the input is 

no larger than 98303.

For some specific cases it may be possible to do the division in floating point instead. 

Including conversions back and forth it will be 8 cycles. You may have to take special case 

to handle precision and rounding here, so be careful and do proper testing if you go down 

this path.



GCN supports doubles. First question if you consider using it is if you actually need them. 

There is a good chance that you do not. In my entire career doubles have been the answer 

(aside from quick hacks and tests) pretty much only in Mandelbrot rendering, and in that 

case it is mostly just the better choice compared to floats rather than the final solution, 

ideally I would like even more precision. However, there are certainly scientific 

computations and other applications where the use of doubles is a sensible choice, and in 

that case there are a few things you can do.



Much like with floats, doubles benefit from MAD-form. Note that there is no IEEE-754 

compatible MAD instruction for doubles that rounds between the multiply and add. There is 

only a fused multiply-add, with a single rounding in the end. I would imagine that this 

would rarely cause any problems for any typical applications, and FMA is certainly the 

preferable choice if you are not constrained by strict IEEE-754 compatibility.

There is no direct support for double division in GCN. Actually not for floats either. For 

floats the compiler simply accept 1.0 ULP, thus allowing it to be implemented as an rcp

followed by a multiply. However, the hardware has some supporting functions for the case 

where you really really need that proper 0.5 ULP result, allowing you to potentially flip the 

last bit on your float at the cost of lots of cycles.

Note that for doubles the compiler implements a strict 0.5 ULP by default. This means you 

will go down the expensive path by default, unlike for floats. If this is not desired and you 

can live with somewhat worse precision in your divisions, you can implement the division as 

an rcp and multiply manually. This will reduce the cost somewhat, although it is still not 

cheap by any means.



With every generation the ALU power keeps increasing at a far greater rate than the 

available bandwidth. As such, it is of increasing important to pack your data as tightly as 

possible. There are a few handy features for fast pack and unpack. Firstly the standard DX11 

functions for converting floats to half and vice versa. The other is the bit-field manipulation 

instructions on GCN. These are exposed as intrinsics on some platforms and can be used 

explicitly there. In other cases the compiler will typically spot extraction and packing of bit-

fields and generate these instructions for you. The case illustrated here with an unpacking of 

a good old R5G6B5 color will compile into only three instructions, rather than five that you 

might expect with standard bitwise operations.



As I mentioned in my talk last year, sign() is poorly implemented under the hood and for 

most practical cases does too much work. Most use cases actually do not care about 

handling 0, or would rather flip it in either direction instead of returning 0, but sign() is a 

generic built-in function and does generic things. Implementing it as a conditional 

assignment is much faster, like (x >= 0)? 1 : -1. Similarly the step() function can be 

implemented as (x >= a)? 1 : 0. The advantage of doing this explicitly, other than improved 

readability (IMHO), is that the typical use case can also be further optimized. Normally 

sign() and step() are multiplied with something afterward rather than just used as is. If you 

use the functions, not only are you paying for the suboptimal handling under the hood, you 

are also paying for that multiplication. However, when written as a conditional assignment 

you can simply merge that into your parameters that you select from and get it for free.

GCN has 3-component min, max and med instructions. The obvious usage case is to do 

faster reductions, e.g. finding the max value in a 3x3 neighborhood would take 4 cycles 

instead of 8. A somewhat less obvious use case is to use med3() as a general clamp in one 

cycle instead of two.



SamplerStates are data that must be fetched. Thus it is preferable to use Load() instead of 

Sample() with a point filter if that works and without introducing conversions between floats 

and ints (which may be more costly as they are vector instructions).

If you are coming from a DX9 or last-gen console engine, chances are that sampler states 

and textures are linked, i.e. texture 0 uses sampler state 0 and texture 1 uses sampler state 1 

etc.. Already DX10 stepped away from this model, but it is easy to get stuck with the same 

conceptual model as long as your engine has last-gen console support or uses shaders with 

DX9-style syntax. Typically a shader has many more textures than sampler states, so the 

result is that the shader will have to load many more sampler states than is necessary and 

will simply keep many copies of the same data in its registers, wasting scalar register space 

and loads.



As mentioned before, cubemap sampling comes at a bit of overhead in terms of ALU 

instructions. This can typically not be avoided since you usually really need a cubemap 

where you use them. The exception is things like a skybox. While storing it as a cubemaps 

seems reasonable, it can be faster to simply draw it using a set of 2D textures or an atlas.

Load() and Sample() both accept integer offsets for sampling neighboring texels. In previous 

generations this was baked into the instruction and came for free. For GCN this is no longer 

true for Load(). As a result, sampling with an offset inserts ALU instructions to add the 

offsets between each Load(). In many cases like this, it makes sense to use Gather() instead. 

For Sample() though, providing an offset is still OK and will still be for free.



Optimizing for registers is unfortunately one of the hardest things to give solid advice on. 

This is mostly a black box completely under the control of the compiler and not something 

that is particularly deterministic. ALU expressions tend to give quite predictable results, but 

the number of registers can go up and down in non-intuitive ways depending on the code 

you write. However, there are a few piece of advice one can give. The idea is overall to keep 

the shader “thin” in terms of the data it needs around and the stuff that it does. You will get 

as many registers as your worst-case path through the shader. So if you need to do two sets 

of work, it may be better to do one thing first and then the other, rather than both together 

and risking a fat path when data for both types of work need to be simultaneously resident. 

Keep the life-time of data as low as possible. Fetch data near its use. Keep data packed until 

you need it. And do not just keep data around if you have no need for it. The typical case 

would be to hold on to an alpha value you got from sampling a texture and simply return it 

in the alpha channel by the end of the shader, even if you do not really need an alpha. This 

will occupy a register for the entire span from sampling the texture, until the end of the 

shader.



Über-shaders are great for authoring; however, not so much for execution. Branching 

unfortunately tends to increase register pressure. So while branches are cheap on GCN, and 

branching for feature selection would be a viable approach from that point of view, it can 

have a very negative impact on register count, and thus performance. You will always pay 

for your worst-case path, so even if you end up skipping the vast majority of shader work 

you may still get a significant slowdown from reduced latency hiding. So it is advisable to 

create a set of specialized shaders, perhaps with #ifdef in the Über-shader.



The rant part of this talk!



Compilers are sometimes too smart for their own good. In the case of fxc for windows, the 

biggest issue is that it has no knowledge about the hardware, it only works with an abstract 

pseudo-instruction set. From that point of view merging things to multiply integer by 5 

instead of the intended shift and add makes sense, except on all hardware a 32bit multiply is 

much slower than shifts and adds.





Obviously, what the compiler should be doing is the reverse, take a multiply by 5 and 

convert to a shift and add. This will be an improvement that works for a limited number of 

integers, but for many common small numbers it works, as well as some large ones.

For PC the D3D bytecode needs to provide more semantics to allow the driver optimizer to 

do a better job. Information about input ranges and so on that fxc knows about is lost in the 

process.

As a general complaint on HLSL, the language is way to permissive on accepting implicit 

type conversions. Make a function that takes a float4x4 matrix, call it with a bool and it just 

compiles and obviously does nothing like what you intended. Can we please at least require 

a cast?



There are lots of things on the hardware that would be interesting to explore in the future. 

Some of these things are just kind of cool in a sense, but without a clear use case. Such as 

passing data between lanes in a shader. What would you use it for, other than gradients? I 

don’t know. The data for branching just lies in a scalar register. What can we use it for? 

Debug visualization of branch coherency perhaps? I am sure we will discover many 

interesting opportunities in the future.



The GCN architecture is surprisingly well documented. If you enjoyed this talk, I would 

recommend you take a look at the documentation. A lot of the content was inspired from 

that.




